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Abstract

This study evaluates the forecasting performance of machine learning (ML) models in predicting inflation in Azerbaijan, using quarterly data
from 2004Q1 to 2024Q4. The analysis is based on out-of-sample forecasts starting from 2019Q1, covering forecast horizons of one, two,
four, six and eight quarters ahead. The ML models considered are Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support
Vector Regression (SVR), and Elastic Net (ENET). These models are compared against three traditional benchmark models, including the
Autoregressive Integrated Moving Average (ARIMA), the Random Walk (RW), and a standard Vector Autoregressive (VAR) model.
Forecast accuracy is assessed using the Root Mean Squared Forecast Error (RMSFE) and the Diebold-Mariano (DM) test. The results show
that while traditional models perform well at shorter horizons, ML models demonstrate better accuracy as the forecast horizon increases.
These findings highlight the potential of ML techniques to be considered by policymakers as a tool for improving medium- to long-term
inflation forecasting.
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1. Introduction

As price stability is a primary objective of central banks, producing accurate inflation forecasts is crucial for
shaping effective monetary policy and achieving inflation targets. In Azerbaijan, inflation is driven by a
combination of domestic and external factors. Exchange rate fluctuations, global inflation pressures, prices of
agricultural products, and fluctuations in the money supply contribute to consumer inflation. (Rahimov, 2025)

Traditional forecasting methods, such as ARIMA and RW, have been widely used due to their simplicity and
established theoretical foundations. These models typically assume linear dynamics and stationarity, which may
not fully capture structural breaks, non-linear interactions, or the impact of exogenous shocks. In addition to
these univariate models, VAR models are commonly employed in inflation forecasting as they allow for the joint
modelling of multiple macroeconomic variables.

Machine learning offers new opportunities for forecasting by handling large datasets, capturing complex
economic relationships, and improving prediction accuracy. Unlike traditional models, ML algorithms learn
directly from data without relying on pre-specified equations. Although these techniques are gaining popularity
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in macroeconomic forecasting, their use in Azerbaijan remains limited. This study helps to fill that gap by
assessing how well ML models can predict inflation in Azerbaijan, and how they compare to conventional
models like ARIMA, RW, and VAR across various forecast horizons.

This research contributes to the broader discussion on the applicability of ML models in economic forecasting by
offering empirical evidence from a country where inflation has historically been influenced by supply- and
demand-side factors, as well as structural changes. Furthermore, the findings provide insights for central banks
and policy institutions on integrating ML-based tools into their forecasting framework.

2. Literature Review

Machine learning has emerged as a valuable tool in economic forecasting, especially for modelling variables
characterised by non-linear relationships. In the context of inflation forecasting, several recent studies have
shown that ML techniques can outperform traditional econometric models, particularly in environments
characterised by complex dynamics or heightened uncertainty.

Mullainathan and Spiess (2017) introduce economists to core ML methods, emphasising their usefulness in
prediction tasks and their contrast with traditional econometric approaches. They highlight key ML tools such as
regularisation, ensemble methods, decision trees, and neural networks, explaining how they prioritise out-of-
sample prediction accuracy over causal inference. The authors argue that ML complements econometrics by
offering new ways to handle high-dimensional data and uncover complex patterns without requiring strong
model assumptions.

Medeiros and Vasconcelos (2016), using monthly US macroeconomic variables from 1960 to 2011, find that
high-dimensional ML models, especially flexible adaptive LASSO, outperform traditional AR and factor models
in forecasting macroeconomic variables. Flexible adaptive LASSO consistently yields the lowest forecast errors
for both one-step and four-step ahead horizons across most target variables, including inflation. In a subsequent
study, Medeiros et al. (2021) extend their US inflation forecasting analysis by employing a set of ML models,
including linear shrinkage methods and non-linear algorithms. They demonstrate that ML models, particularly
RF, significantly outperform traditional benchmarks, such as RW, AR, and unobserved components models.

Aras and Lisboa (2022) study how ML models, specifically RF and XGBoost, can be used to accurately forecast
inflation. Using monthly euro area data, the authors show that tree-based ML models outperform traditional
benchmarks such as AR and VAR models in both short- and medium-term forecasts. The study finds that energy
prices, labour costs, and expectations are among the most consistently important variables. Overall, the paper
demonstrates that explainable ML models offer both high predictive power and transparency, making them
valuable tools for central banks and policymakers.

In emerging markets, the literature is more limited but growing. Rodriguez-Vargas (2020) evaluates the
performance of various forecasting models, including ARIMA, Bayesian VAR, and ML methods such as RF and
XGBoost, in predicting short-term inflation in Costa Rica. The study finds that ML models, particularly
XGBoost, outperform traditional models in out-of-sample accuracy, especially during periods of high volatility.
The author emphasises the importance of including external variables, such as commodity prices and exchange
rates, to improve forecast precision. The results support the use of advanced ML tools by central banks to
complement traditional approaches in inflation monitoring and policy decision-making. Araujo and Gaglianone
(2023) evaluate the performance of machine learning models, including LASSO, RF and Bagging, for predicting
inflation in Brazil using a large set of macroeconomic variables. They find that machine learning models provide
more accurate forecasts than traditional models such as autoregressive and factor-based approaches, especially
for short-term horizons. The results highlight the importance of flexible model structures and data-driven
variable selection in improving inflation forecasts.

To the best of our knowledge, the ML techniques have not yet been applied to inflation forecasting in
Azerbaijan. This study aims to fill this gap by exploring the potential of these methods in capturing inflation
dynamics. It contributes to the literature by providing empirical evidence on the forecasting performance of
machine learning approaches in the context of an oil-exporting economy.

3. Data and Methodology

We use quarterly data for Azerbaijan spanning from 2004Q1 to 2024Q4. The target variable is year-over-year
inflation in the Consumer Price Index (CPI). Figure 1 plots the annual average inflation rates of Azerbaijan for
the period from 2004 to 2024. As can be seen, Azerbaijan recorded a double-digit inflation rate at the beginning
of the sample period, exceeding 20%, primarily driven by a booming economy, expansive government spending,
and rapid growth in the money supply. This upward pressure on prices reversed sharply in the second quarter of
2009, when inflation turned negative amid the onset of the Global Financial Crisis and a concurrent drop in
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global oil prices. As global economic conditions improved, Azerbaijan’s inflation rate began to recover and
entered a period of relative stability, remaining low and steady for approximately five years. In mid-2014,
however, the decline in oil prices triggered a major policy response. The Central Bank of Azerbaijan devalued
the national currency in February and December 2015 and introduced a managed floating exchange rate regime.
The manat subsequently lost about half of its value against the US dollar. This sharp depreciation led to inflation
accelerating at the end of 2015, reaching double-digit levels in 2016. The continued currency weakening into
early 2017 kept inflation elevated throughout that year, before it moderated to around 2-3% in 2018 and
remained around that level through 2020. A new wave of inflationary pressure emerged in 2021, triggered by a
combination of post-pandemic pent-up demand and global supply chain disruptions, including those caused by
geopolitical tensions. As a result, inflation surged again, reaching the 13-14% range in 2022. However,
beginning in the second half of 2023, inflation began to ease significantly, eventually falling to below 1% in
2024Q2, before accelerating in the second half of the year following the increase in regulated prices.
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Figure 1. Annual average CPI inflation (2004-2024).

Source: The State Statistical Committee of the Republic of Azerbaijan

The variables used in the ML models include CPI, non-oil real GDP, agricultural producer price index (PPI),
manufacturing PPI, food PPIl, M2 money supply, non-oil trade-weighted nominal effective exchange rate
(NEER), Brent oil price, CPI of main trading partners, and world food price index.

All explanatory variables are transformed into year-on-year percentage changes to align with the dependent
variable (inflation), ensure stationarity and eliminate seasonality effects. Augmented Dickey-Fuller unit root test
confirms that the transformed series are stationary. We implement two broad categories of forecasting models in
this study: ML models and traditional time series benchmarks. The ML group includes RF, XGBoost, SVR and
ENET regression. These models are designed to capture complex patterns and interactions among
macroeconomic predictors that conventional time series approaches may overlook. While traditional time series
models generally require stationary data and assume linear dynamics, ML models are more flexible and do not
rely on such assumptions. Nevertheless, transforming the variables helps to improve forecasting performance
and facilitates consistency across models.

The RF model, introduced by Breiman (2001), is a non-parametric ensemble learning technique that constructs a
multitude of decision trees during training and outputs the average prediction of the individual trees. This
averaging helps to reduce model variance and mitigate the risk of overfitting. In our implementation, we
optimise key hyperparameters such as the number of trees and maximum tree depth using cross-validation to

improve forecast accuracy. The final prediction for a given input * is obtained by averaging the predictions of all
individual trees:
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B is the total number of trees in the forest, and Ty (x) denotes the prediction from the

b

where -th decision tree.

Extreme Gradient Boosting, also known as XGBoost, is a tree-based ensemble learning algorithm developed by
Chen and Guestrin (2016). It is widely recognised for its scalability, computational efficiency, and high
predictive accuracy in both regression and classification tasks. It builds an ensemble of weak learners in a
sequential manner, where each new tree attempts to correct the residual errors of the previous ones. We fine-tune
key hyperparameters, including the learning rate, the number of boosting rounds, and the maximum tree depth,
using a grid search combined with time-series cross-validation to avoid data leakage and ensure temporal
integrity. The parameter grid includes learning rates in the range {0.01, 0.05, 0.1}, maximum depths from 3 to
10, and boosting rounds from 100 to 1000, with early stopping applied to prevent overfitting. The objective
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function includes both a differentiable loss function FE) and a regularisation term ﬂ(fr) which penalises
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This regularisation helps control overfitting, particularly in high-dimensional settings. In our implementation, we
fine-tune critical hyperparameters such as the learning rate, number of boosting rounds, and maximum tree depth
using grid search and cross-validation to achieve optimal forecasting performance.

Support Vector Regression (SVR), proposed by Cortes and Vapnik (1995) and later formalised for regression by
Smola and Scholkopf (2004), is a kernel-based machine learning algorithm that estimates a function within a

£

predefined margin of tolerance =, while minimising model complexity. The model fits a function

— T
flx) =w @(x)+ b, where ¢(x) maps input data into a higher-dimensional feature space. The objective
function of the SVR is expressed as follows:
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We apply the radial basis function kernel to capture non-linear relationships between inflation and its predictors.
The hyperparameters C, € and kernel width @ are optimised through grid search with cross-validation.

Elastic Net (ENET) regression, introduced by Zou and Hastie (2005), is a regularised linear modelling technique
that combines the strengths of both Least Absolute Shrinkage and Selection Operator (LASSO) and Ridge
regression. It addresses the limitations of LASSO, particularly in cases of high multicollinearity or when the
number of predictors exceeds the number of observations. ENET applies both L1 and L2 penalties to the
regression coefficients, enabling effective variable selection while maintaining grouped variable behaviour. The
optimisation problem is defined as:

m P 7
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where Az0 is the overall regularisation parameter and & e [0.1] controls the balance between LASSO (L1)
y

and Ridge (L2) penalties. Setting @ = 0-> gives equal weight to both. We tune * and & using cross-validation

to enhance out-of-sample forecast accuracy.

In contrast, we also estimate three traditional time series benchmarks to provide a reference point for evaluating
the performance of the machine learning models. The first is the Autoregressive Integrated Moving Average

(ARIMA) model, which is widely used for forecasting univariate time series. An ARIMA(P’ d, ) model is
expressed as:

@(L)(1—L)%, =8(L)s, )

Where P(L) =1 =@ L === L7 g O(L) =1 + 6, L+ -+ 6,17 ¢ lag polynomials, L is the
lag operator, and ¥t is a white noise error term.

The second benchmark is the Random Walk (RW) model, a robust yet straightforward forecasting method that
assumes inflation follows a stochastic process with no mean reversion. The RW model is a special case of

ARIMA(9: 10, defined as:

Ve = Vi1 T & (10)

Under this approach, future values are predicted based solely on the most recent observation. Despite its
simplicity, the RW often performs competitively in macroeconomic forecasting, making it a strong baseline for
evaluating predictive improvements.

As a third benchmark, we include the vector autoregression (VAR) model, initially proposed by Sims (1980),
which captures the dynamic interrelationships among multiple endogenous macroeconomic variables without
requiring strong theoretical priors on variable ordering. Following Rahimov (2025), the VAR model includes six
variables: CPI, agricultural PP1, M2 money supply, non-oil real GDP, CPI of main trading partners and non-oil

trade-weighted NEER, all expressed as year-over-year percentage changes. A VAR(P) model for a K.

dimensional vector of variables ¥ is specified as:

Ve =AYy T Ay, o+t AN, T s (11)

Where A; are KXK coefficient matrices, and Er"’N(ﬂrE) is a vector of innovations with a constant

covariance matrix = . Each equation in the VAR is estimated using ordinary least squares, exploiting the fact that
all regressors are predetermined under the assumption of no contemporaneous feedback.

By comparing the results from these diverse modelling strategies, we aim to assess whether ML techniques
provide meaningful improvements in forecast accuracy over traditional time series approaches in the context of
inflation forecasting.

4. Forecast Design and Evaluation

The expanding window approach is applied in this study, where the training sample grows recursively by
including one additional observation at each step. This method reflects realistic forecasting settings in which
models are re-estimated as new data becomes available, enabling better adaptation to evolving economic
conditions. All forecasts are generated dynamically, meaning that each prediction beyond the initial period relies
on model estimates rather than observed future values, thereby ensuring a fair and consistent comparison across
models.

The training period spans from 2004Q1 to 2018Q4. Forecasts are generated recursively for each horizon
beginning in 2019Q1 and ending in 2024Q4. We produce forecasts for one-, two-, four-, six- and eight-quarter
horizons. The expanding window strategy simulates real-world forecast conditions, where the model is updated
each period with newly available data.

To assess the forecasting accuracy of the models, we employ the root mean squared forecast error (RMSFE). For

a given variable ! over a forecast horizon of h periods, the RMSFE is calculated as:
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where ¥ T+ is the actual value, while ¥ T+ is the forecasted value.

In this study, RMSFE is reported in relative terms. Specifically, it is computed as the ratio of the RMSFE from
the ML models to that of a benchmark model. A relative RMSFE below one indicates superior forecasting
performance of the ML model, while a value above one suggests inferior performance.

While some studies suggest that averaging forecasts across multiple models can enhance predictive accuracy by
mitigating individual model weaknesses, this approach is not pursued in the present analysis. Instead, the focus is
on evaluating the standalone performance of each model to highlight its relative strengths across forecast
horizons.

As our focus is on evaluating ML models, we select the RW, ARIMA and VAR models as benchmarks. To
determine whether the differences in forecast accuracy are statistically significant, we apply the Diebold-
Mariano (DM) test (1995). The test is based on the loss differential between the forecast errors of two models,
defined as:

d, = g(e) - g(e)

where €1 is the forecast error from model ", and g(’) is a general loss function, typically the squared error.

, (13)

The DM test statistic is calculated as:

d
|Farldg)

vor (14)

DM =

Where @ is the mean of the loss differentials @, Var(d.) is their variance, and ™ is the number of forecast
observations. The null hypothesis states that there is no statistically significant difference in forecast accuracy
between the model of interest and the benchmark.

5. Results and Discussion

This section evaluates the forecasting performance of ML models relative to three benchmark models. Two
primary metrics are used to assess forecast accuracy. The first is the RMSFE?, which indicates the magnitude of
forecast errors produced by each ML model relative to the benchmarks. The second is the DM test, which
provides a formal statistical comparison of predictive accuracy. A p-value below 0.05 is interpreted as evidence
that the ML model delivers significantly better forecasts than the benchmark.

Table 1. Relative RMSFE of Machine Learning Models vs Traditional Benchmark Models

Horizon Model ML vs ARIMA ML vs RW ML vs VAR
RF 1.22 0.87 0.81
XGB 1.36 0.97 0.90
1-step
SVR 1.65 1.17 1.09
ENET 1.68 1.20 1.12
2-step RF 0.73 0.54 0.69

1 We have also calculated the relative Mean Absolute Errors between the ML and benchmark models. The
results are similar to RMSFES, which can be shared upon request.
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Horizon Model ML vs ARIMA ML vs RW ML vs VAR
XGB 0.69 0.51 0.65
SVR 1.12 0.83 1.06
ENET 1.09 0.81 1.03
RF 0.47 0.35 0.44
XGB 0.48 0.36 0.44
4-step
SVR 0.75 0.56 0.69
ENET 0.78 0.58 0.72
RF 0.34 0.26 0.29
XGB 0.34 0.27 0.29
6-step
SVR 0.62 0.49 0.53
ENET 0.67 0.53 0.57
RF 0.27 0.24 0.24
XGB 0.25 0.22 0.22
8-step
SVR 0.56 0.49 0.49
ENET 0.70 0.62 0.61

Table 1 reports the relative RMSFE values for the ML models across different forecast horizons. At the shortest
horizon, corresponding to one-quarter-ahead forecasts, some ML models perform better than certain
benchmarks. For instance, RF and XGB yield relative RMSFEs of less than one when compared to the RW and
VAR models. However, SVR and ENET still produce forecast errors larger than all three benchmarks. This
suggests that while traditional time series models often remain competitive at short horizons, specific ML
models like RF and XGB can offer improved accuracy even in the near term.

As the forecast horizon extends, the relative performance of the ML models improves noticeably. By the two-
step horizon, ML models begin to deliver comparable or slightly better results than the benchmarks, particularly
when compared to the RW. However, the most significant improvements emerge from the four-step horizon
onwards. At this point, ML models consistently produce RMSFE values below one, which indicates better
predictive accuracy.

At the six- and eight-step horizons, the differences become substantial. RF and XGB achieve the lowest forecast
errors among all models. Their performance is robust across all benchmark comparisons. These results reflect the
ability of ML algorithms to capture underlying non-linear patterns and long-term dependencies that may be
difficult to model using linear time series techniques.
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Table 2. Diebold-Mariano Test p-values (Machine Learning vs Benchmark Models)

Horizon Model ML vs ARIMA ML vs RW ML vs VAR
RF 0.44 0.56 0.48
XGB 0.10 0.86 0.73
1-step
SVR 0.08 0.50 0.56
ENET 0.05 0.43 0.57
RF 0.34 0.15 0.30
XGB 0.24 0.14 0.31
2-step
SVR 0.70 0.54 0.71
ENET 0.79 0.54 0.91
RF 0.08 0.07 0.06
XGB 0.07 0.09 0.09
4-step
SVR 0.31 0.10 0.11
ENET 0.35 0.13 0.19
RF 0.00 0.01 0.00
XGB 0.01 0.02 0.00
6-step
SVR 0.18 0.02 0.00
ENET 0.08 0.00 0.01
RF 0.00 0.00 0.00
XGB 0.00 0.01 0.01
8-step
SVR 0.02 0.00 0.00
ENET 0.11 0.00 0.00

We present the results of the Diebold-Mariano tests in Table 2. At the one-step horizon, the SVR and ENET
models perform significantly worse than the ARIMA benchmark at 10% and 5% significance levels,
respectively, evidenced by p-values. This finding aligns with the relative RMSFE values reported in Table 1,
where SVR and ENET have ratios above one, indicating worse performance.

At the two-step horizon, the DM test results show no statistically significant differences in forecast accuracy
between the ML models and the benchmark models. All p-values exceed conventional significance thresholds of
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5%, indicating that the observed performance differences are not statistically robust. At the four-step horizon, all
ML models outperform the benchmark models in terms of RMSFE. However, none of these differences are
statistically significant, indicating that the improvements are not robust. Overall, the evidence at these horizons
does not support a consistent forecasting advantage for ML models at 5% significance level.

The most convincing evidence in favour of ML models emerges at the six and eight-step horizons. At these
longer forecast horizons, RF and XGB exhibit highly statistically significant improvements across all benchmark
comparisons. SVR and ENET also perform well, with several p-values below 0.05, particularly in comparison to
the RW and VAR models. At the eight-step horizon, the evidence is particularly strong: RF, XGB and SVR
show statistically significant improvements over ARIMA, RW and VAR. ENET also delivers significant gains

over RW and VAR, though not ARIMA.
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8-quarter-ahead Forecasts vs Actual Inflation
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Figure 2. Forecasts vs Actual Inflation

Furthermore, Figure 2, which illustrates actual inflation against forecasts from each model, visually confirms the
patterns observed in the tables. At the shortest horizons, ARIMA tend to track actual inflation more closely than
the ML models. As the forecast horizon lengthens, machine learning models, especially RF and XGB, produce
smoother and more aligned forecasts that better capture turning points and underlying volatility in inflation. This
reflects the ML models’ ability to learn long-term dependencies and non-linear relationships in the data that
traditional linear models may fail to represent.

The comparative evaluation based on Tables 1 and 2, along with the visual illustration in Figure 2, reveals a clear
pattern of forecast performance that varies by horizon. In the short term, the ML models either underperform or
do not significantly outperform traditional time series methods in terms of predictive accuracy. This may be
attributed to the strong autoregressive structure of inflation in the near term and the tendency of ML models to
require more data to effectively detect subtle patterns. However, as the forecast horizon increases, the ML
models begin to outperform their traditional counterparts. These improvements are evident not only in relative
forecast error metrics but also in statistically significant differences at longer horizons.

The differences in model performance across forecast horizons largely stem from how each model processes
information. Traditional models, such as ARIMA, RW, and VAR, tend to perform well at shorter horizons.
ARIMA and RW rely heavily on recent values of the target variable, capturing strong short-term autocorrelation
commonly seen in inflation. VAR models, while incorporating multiple macroeconomic indicators, are still
limited by their linear structure and fixed lag specification, which can constrain their flexibility in adapting to
changing dynamics. In contrast, as the forecast horizon extends, the strengths of ML models, especially RF and
XGB, become increasingly evident. These models are better at picking up complex, non-linear patterns and
interactions between variables, which often take more time to materialise. Their advantage at longer horizons
reflects this ability to recognise deeper structures in the data, such as delayed effects from macroeconomic
indicators, that traditional models may miss.

6. Conclusion

This study highlights that while traditional series models remain competitive at shorter horizons, ML models
become increasingly effective as the forecast horizon extends. Using quarterly data on Azerbaijan’s inflation and
related domestic and external variables from 2004Q1 to 2024Q4, the models were trained on data up to 2018Q4,
with forecasts evaluated out-of-sample from 2019Q1 onward. The analysis covers forecast horizons of one, two,
four, six, and eight quarters ahead. The ML models considered are RF, XGBoost, SVR, and ENET. These are
compared against three traditional benchmark models, including the ARIMA, the RW, and a standard VAR
model. Forecast accuracy is assessed using the RMSFE and the DM test. The results indicate that ML models
offer more accurate forecasts at longer horizons, particularly beyond four quarters, by better capturing turning
points and long-term patterns.

These findings have important implications for macroeconomic forecasting and policy analysis. In countries like
Azerbaijan, where inflation dynamics are influenced by a combination of demand- and supply-side factors,
structural changes, and external shocks, traditional linear models may sometimes struggle to capture the full
complexity of these processes. ML approaches enhance forecasting performance by identifying complex patterns
and responding to structural shifts that conventional models often miss. For central banks seeking reliable
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medium- to long-term inflation forecasts to inform monetary policy, ML models present a promising
complement to existing frameworks.

References

Aras, S. and Lisboa, P.J., 2022. Explainable inflation forecasts by machine learning models. Expert Systems with
Applications, 207, p.117982.

Araujo, G.S. and Gaglianone, W.P., 2023. Machine learning methods for inflation forecasting in Brazil: New contenders
versus classical models. Latin American Journal of Central Banking, 4(2), p.100087.

Breiman, L., 2001. Random forests. Machine learning, 45, pp.5-32.

Chen, T. and Guestrin, C., 2016, August. Xghoost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining (pp. 785-794).

Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine learning, 20, pp.273-297.

Diebold, F.X. and Mariano, R.S., 1995. Com paring predictive accuracy. Journal of Business and Economic Statistics, 13(3),
pp.253-263.

Medeiros, M.C. and Vasconcelos, G.F., 2016. Forecasting macroeconomic variables in data-rich environments. Economics
Letters, 138, pp.50-52.

Medeiros, M.C., Vasconcelos, G.F., Veiga, A. and Zilberman, E., 2021. Forecasting inflation in a data-rich environment: the
benefits of machine learning methods. Journal of Business & Economic Statistics, 39(1), pp.98-119.

Mullainathan, S. and Spiess, J., 2017. Machine learning: an applied econometric approach. Journal of Economic
Perspectives, 31(2), pp.87-106.

Rahimov, V., 2025. “A Bayesian VAR Model for Inflation: The Case of Azerbaijan. Financial and Credit Activity Problems
of Theory and Practice, 4(63), pp. 180-191.

Rodriguez-Vargas, A., 2020. Forecasting Costa Rican inflation with machine learning methods. Latin American Journal of
Central Banking, 1(1-4), 100012.

Sims, C.A., 1980. Macroeconomics and reality. Econometrica: journal of the Econometric Society, pp.1-48.
Smola, A.J. and Scholkopf, B., 2004. A tutorial on support vector regression. Statistics and computing, 14, pp.199-222.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 58(1), pp.267-288.

11



